Formula Sheet for Algebra 1
2 mins read

Formula Sheet for Algebra 1

Essential Formulas

Linear Equations

  • Slope-intercept form: y = mx + b
  • Point-slope form: y – y1 = m(x – x1)
  • Standard form: Ax + By = C
  • Slope of a line: m = (y2 – y1) / (x2 – x1)
  • Distance between two points: d = sqrt((x2 – x1)^2 + (y2 – y1)^2)

Polynomials

  • Quadratic formula: x = (-b ± sqrt(b^2 – 4ac)) / 2a
  • Binomial theorem: (a + b)^n = Σ[k=0 to n] (n choose k) a^(n-k)b^k
  • Remainder theorem: r = p(c) when x – c is a factor of p(x)
  • Factor theorem: If p(c) = 0, then x – c is a factor of p(x)
  • Difference of squares factorization: a^2 – b^2 = (a + b)(a – b)

Exponents and Radicals

  • Product rule: a^m * a^n = a^(m + n)
  • Quotient rule: a^m / a^n = a^(m – n)
  • Power of a power rule: (a^m)^n = a^(mn)
  • Root rule: sqrt(a^m) = a^(m/2)
  • Rationalizing denominators: √a / √b = √(a/b)

Statistics

  • Mean: μ = Σ(x) / n
  • Median: Middle value of a data set
  • Mode: Most frequent value in a data set
  • Range: Maximum value – Minimum value
  • Standard deviation: σ = sqrt(Σ(x – μ)^2 / (n – 1))

Trigonometry

  • Sine: sin(θ) = opposite / hypotenuse
  • Cosine: cos(θ) = adjacent / hypotenuse
  • Tangent: tan(θ) = opposite / adjacent
  • Pythagorean theorem: a^2 + b^2 = c^2
  • Law of sines: a / sin(A) = b / sin(B) = c / sin(C)
  • Law of cosines: a^2 = b^2 + c^2 – 2bc cos(A)

Tables

Equivalent Forms of Linear Equations

Form Equation
Slope-intercept y = mx + b
Point-slope y – y1 = m(x – x1)
Standard Ax + By = C
Horizontal y = k
Vertical x = h

Rules of Exponents

Rule Expression
Product a^m * a^n = a^(m + n)
Quotient a^m / a^n = a^(m – n)
Power of a power (a^m)^n = a^(mn)
Negative exponent a^-n = 1/a^n
Zero exponent a^0 = 1

Trigonometric Functions

Function Definition
Sine sin(θ) = opposite / hypotenuse
Cosine cos(θ) = adjacent / hypotenuse
Tangent tan(θ) = opposite / adjacent
Cotangent cot(θ) = 1 / tan(θ)
Secant sec(θ) = 1 / cos(θ)
Cosecant csc(θ) = 1 / sin(θ)

Common Trigonometric Identities

Identity Formula
Pythagorean theorem sin^2(θ) + cos^2(θ) = 1
Double-angle formulas sin(2θ) = 2 sin(θ) cos(θ), cos(2θ) = cos^2(θ) – sin^2(θ)
Half-angle formulas sin(θ/2) = ±sqrt((1 – cos(θ)) / 2), cos(θ/2) = ±sqrt((1 + cos(θ)) / 2)